Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(9)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37174671

RESUMO

Gray mold caused by Botrytis cinerea causes significant losses in tomato crops. B. cinerea infection may be halted by volatile organic compounds (VOCs), which may exhibit fungistatic activity or enhance the defense responses of plants against the pathogen. The enhanced VOC generation was observed in tomato (Solanum lycopersicum L.), with the soil-applied biocontrol agent Trichoderma virens (106 spores/1 g soil), which decreased the gray mold disease index in plant leaves at 72 hpi with B. cinerea suspension (1 × 106 spores/mL). The tomato leaves were found to emit 100 VOCs, annotated and putatively annotated, assigned to six classes by the headspace GCxGC TOF-MS method. In Trichoderma-treated plants with a decreased grey mold disease index, the increased emission or appearance of 2-hexenal, (2E,4E)-2,4-hexadienal, 2-hexyn-1-ol, 3,6,6-trimethyl-2-cyclohexen-1-one, 1-octen-3-ol, 1,5-octadien-3-ol, 2-octenal, octanal, 2-penten-1-ol, (Z)-6-nonenal, prenol, and acetophenone, and 2-hydroxyacetophenone, ß-phellandrene, ß-myrcene, 2-carene, δ-elemene, and isocaryophyllene, and ß-ionone, 2-methyltetrahydrofuran, and 2-ethyl-, and 2-pentylfuran, ethyl, butyl, and hexyl acetate were most noticeable. This is the first report of the VOCs that were released by tomato plants treated with Trichoderma, which may be used in practice against B. cinerea, although this requires further analysis, including the complete identification of VOCs and determination of their potential as agents that are capable of the direct and indirect control of pathogens.


Assuntos
Hypocrea , Solanum lycopersicum , Trichoderma , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Solo
2.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231012

RESUMO

In the present study, Trichoderma virens TRS 106 decreased grey mould disease caused by Botrytis cinerea in tomato plants (S. lycopersicum L.) by enhancing their defense responses. Generally, plants belonging to the 'Remiz' variety, which were infected more effectively by B. cinerea than 'Perkoz' plants, generated more reactive molecules such as superoxide (O2-) and peroxynitrite (ONOO-), and less hydrogen peroxide (H2O2), S-nitrosothiols (SNO), and green leaf volatiles (GLV). Among the new findings, histochemical analyses revealed that B. cinerea infection caused nitric oxide (NO) accumulation in chloroplasts, which was not detected in plants treated with TRS 106, while treatment of plants with TRS 106 caused systemic spreading of H2O2 and NO accumulation in apoplast and nuclei. SPME-GCxGC TOF-MS analysis revealed 24 volatile organic compounds (VOC) released by tomato plants treated with TRS 106. Some of the hexanol derivatives, e.g., 4-ethyl-2-hexynal and 1,5-hexadien-3-ol, and salicylic acid derivatives, e.g., 4-hepten-2-yl and isoamyl salicylates, are considered in the protection of tomato plants against B. cinerea for the first time. The results are valuable for further studies aiming to further determine the location and function of NO in plants treated with Trichoderma and check the contribution of detected VOC in plant protection against B. cinerea.


Assuntos
Hypocrea , S-Nitrosotióis , Solanum lycopersicum , Compostos Orgânicos Voláteis , Botrytis/fisiologia , Hexanóis/farmacologia , Peróxido de Hidrogênio/farmacologia , Óxido Nítrico , Nitrogênio , Oxigênio/farmacologia , Ácido Peroxinitroso , Doenças das Plantas , S-Nitrosotióis/farmacologia , Ácido Salicílico/farmacologia , Superóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...